Publications

[1] Yarlott, W. Victor H. & Finlayson, Mark A. Learning Document-Level Discourse Structure in News. The 2018 Workshop on Events and Stories in the News (EventStory 2018), Santa Fe, NM.

[2] Zevenbergen, B., Finlayson, M. A., Kortz, M., Pagallo, U., Borg, J. S., Zapusek, T. Appropriateness and Feasibility of Legal Personhood for AI Systems. The 3rd International Conference on Robot Ethics and Standards (ICRES 2018), Troy, NY.

[3] Jahan, L. & Chauhan, G. & Finlayson, M. A.. (2018). A New Approach to Animacy Detection. The 27th International Conference on Computational Linguistics (COLING 2018), Santa Fe, NM.

[4] Jahan, L., Chauhan, G., Finlayson, M.. Building on Word Animacy to Determine Coreference Chain Animacy in Cultural Narratives. AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, North America, sep. 2017.

[5] Mealier A-L, Pointeau G, Mirliaz S, Ogawa K, Finlayson M, Dominey PF. Narrative Constructions for the Organization of Self Experience: Proof of Concept via Embodied Robotics. Frontiers in Psychology. 2017;8:1331. doi:10.3389/fpsyg.2017.01331.

[6] Eisenberg, Joshua. D. & Finlayson, Mark A. (2017) A Simpler and More Generalizable Story Detector using Verb and Character Features. The Experimental Methods in Natural Language Processing (EMNLP 2017), Copenhagen, Denmark. 8 pages.

[7] Eisenberg, J. D., Banisakher, D., Presa, M., Unthank, K., Finlayson, M. A., Price, R., Chen, S. (2017) Toward Semantic Search for the Biogeochemical Literature. The 18th IEEE Conference on Information Reuse and Integration (IRI 2017), San Diego, CA. 9 pages.

[8] Banisakher, D., Marinovic, I. Rishe, N., Finlayson, Mark A. (2017) A Supervised Classification Approach to Predicting Knee Pain Improvement in Osteoarthritis Patients. The 30th International Florida Artificial Intelligence Research Society Conference (FLAIRS-30), Marco Island, FL.

[9] Finlayson, M. A. (2017) Report on the 2015 NSF Workshop on Unified Annotation Tooling. In MIT Computer Science and Artificial Intelligence Laboratory Technical Report. 63 pages.

[10] Dominey, P. F., Mealier, A.-L., Pointeau, G., Mirliaz, S., & Finlayson, M. A. (2017, in press) Dynamic Construction Grammar and Steps Towards the Narrative Construction of Meaning. In AAAI 2017 Spring Symposium on Computational Construction Grammar and Natural Language Understanding, Stanford, CA. 8 pages.

[11] Finlayson, M. A. & Erjavec, T. (2017, in press) Overview of Annotation Creation: Processes & Tools. In Handbook of Linguistic Annotation, edited by N. Ide and J. Pustejovsky. Springer. 18 pages, single-spaced. ISBN-13: 978-9402408799. arXiv:1602.05753 [NPR]

[12] Eisenberg, J. D. & Finlayson, M. A. (2016) Automatic Identification of Narrative Diegesis and Point of View. In The 2nd Workshop on Computing News Storylines (CNS 2016), Austin, TX. 36-46. (code)

[13] Finlayson, M. A. (2016) Inferring Propp’s Functions from Semantically Annotated TextJournal of American Folklore129(511) 53-75.

[14] Yarlott, W. V. H. & Finlayson, M. A. (2016) ProppML: A Complete Annotation Scheme for Proppian Morphologies. In The 7th International Workshop on Computational Models of Narrative (CMN’16), Krakow, Poland. 8:1-8:19. doi:10.4230/OASIcs.CMN.2016.8

[15] Yarlott, W. V. H. & Finlayson, M. A. (2016) Learning a Better Motif Index: Toward Automated Motif Extraction. In The 7th International Workshop on Computational Models of Narrative (CMN’16), Krakow, Poland. 7:1-7:10. doi:10.4230/OASIcs.CMN.2016.7

[16] Eisenberg, J. D., Yartlott, W. V. H., & Finlayson, M. A. (2016) Comparing Extant Story Classifiers: Results & New Directions. In The 7th International Workshop on Computational Models of Narrative (CMN’16), Krakow, Poland. 6:1-6:10. doi:10.4230/OASIcs.CMN.2016.6

[17] Finlayson, M. A. (2016) Report on the 2015 NSF Workshop on Unified Annotation Tooling. MIT CSAIL Technical Report No. MIT-CSAIL-TR-2016-014. hdl:1721.1/105270

[18] Finlayson, M. A., Miller, B., Lieto, A., & Ronfard, R. (Eds.) (2016) Proceedings of the 7th Workshop on Computational Models of Narrative (CMN’16), Krakow, Poland. Co-located with Digital Humanities 2016. Published as Open Access Series in Informatics [OASIcs] Vol. 53. Saarbrücken/Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. doi:10.4230/OASIcs.CMN.2016.0. (website)

[19] Eisenberg, J.D.* & Finlayson, M. A. (2016) Comparison of Story Classification Models across New Annotated Data. Miami FLing 2016: Linguistics Matters Festival, Miami, FL.

Caselli, T., Erp, M.v., Minard, A.-L., Finlayson, M.A., Miller, B., Aterias, J., Balahur, A., Vossen, P. (Eds.) (2015) Proceedings of the First Workshop on Computing News Storylines (CNewsStory 2015). Beijing, China.

[20] Finlayson, M. A., Miller, B., Lieto, A., & Ronfard, R. (Eds.) (2015) Proceedings of the 6th Workshop on Computational Models of Narrative (CMN’15), Atlanta, GA. Co-located with the 3rd Annual Conference on Advances in Cognitive Systems. Published as Open Access Series in Informatics [OASIcs] Vol. 45. Saarbrücken/Wadern, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. doi:10.4230/OASIcs.CMN.2015.i. (website)

[21] Finlayson, M. A. (2015) ProppLearner: Deeply Annotating a Corpus of Russian Folktales to Enable the Machine Learning of a Russian Formalist TheoryDigital Scholarship in the Humanities (DSH), doi:10.1093/llc/fqv067

[22] Banisakher, D.M., Marinovic, I., Rishe, N. D., Finlayson, M.A. (in press) A Supervised Classification Approach to Predicting Knee Pain Improvement in OA Patients. The 30th International Florida Artificial Intelligence Research Society Conference (FLAIRS-30), Marco Island, FL.

[23] Finlayson, Mark A. & Corman, Steven R. (2013) The Military Interest in NarrativeSprache und Datenverarbeitung (International Journal for Language Data Processing), 37(1-2) 173-191. (web)

[24] Finlayson, Mark A. (2013) A Survey of Corpora in Computational and Cognitive Narrative ScienceSprache und Datenverarbeitung (International Journal for Language Data Processing), 37(1-2) 113-141. (websupplementary material)

Scroll to top